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Dynamics of Eulerian walkers

A. M. Povolotsky, V. B. Priezzhev, and R. R. Shcherbakov
Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia

~Received 19 December 1997!

We investigate the dynamics of Eulerian walkers as a model of self-organized criticality. The evolution of
the system is divided into characteristic periods which can be seen as avalanches. The structure of avalanches
is described and the critical exponent in the distribution of first avalanchest52 is determined. We also study
a mean square displacement of Eulerian walkers and obtain a simple diffusion law in the critical state. The
evolution of an underlying medium from a random state to the critical one is described.
@S1063-651X~98!14310-6#

PACS number~s!: 05.70.Ln, 05.40.1j, 02.70.2c
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I. INTRODUCTION

To illustrate the phenomenon of self-organized critical
~SOC! @1# a wide range of cellular automata such as sa
piles, rice piles, and forest fires have been proposed@1–3#.
They assume a system consisting of a large number of
ments. The energy being randomly added to the system
redistributed then over the degrees of freedom by a kind
nonlinear diffusion. This is realized by avalanchelike pr
cesses which carry the added energy out of the system.
rule, the system spontaneously evolves towards the cri
state free of any characteristic length and time scale. In
state, probabilistic distributions of quantities characteriz
the statistical ensemble exhibit the power law behavior.

Which features of the SOC dynamics are responsible
the existence of a dynamic attractor in complex system
What are the origins of the scaling and self-similarity in t
stationary state? To answer these questions, one shoul
vestigate nonlinear diffusion in the SOC models and stu
the structure of avalanches. The difficulties encountered h
arise from the complexity of dynamic processes in
strongly correlated SOC systems. Up to now, the most a
lytically tractable model has been the Abelian sand p
model ~ASM! @4#. Due to its simple algebraic structure, th
detailed description of the SOC state of ASM has be
given, and some critical exponents have been found@5–8#.
Recently, a new model has been proposed which is called
Eulerian walkers model~EWM! @9#. In a sense, this model i
even more elementary than ASM as it deals with a sin
moving particle. The dynamics of this model is driven by
walking particle. The motion of a particle is affected by t
medium, and in its turn affects the medium inducing lo
range correlations in the system. If the walk occurs in
closed system, it continues infinitely long and eventually g
self-organized into Eulerian trails@10#. If a system is open
the particles can leave the system and new particles d
time after time. In this case, the system evolves to the crit
state similar to that in ASM. By analogy with ASM, th
avalanches in EWM have been introduced@11# as periods of
reconstruction of recurrent states, after they have been
ken by an added particle.

Another aspect of EWM is the possibility to look at no
trivial diffusion laws and their change under the se
organization. In contrast to the self-avoiding walk where
PRE 581063-651X/98/58~5!/5449~6!/$15.00
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infinitely long memory is due to exclusion of multiple visit
of lattice sites, EWM presents an alternative way to int
duce memory effects. The visited sites are not forbidden
the next visits but a prescription for the next step is chan
after each visit. As a result, EWM evolves to the critical sta
where the deterministic walk is characterized by the sim
diffusion law.

Like most of the problems of the graph theory, EW
admits a simple ‘‘real life’’ interpretation. A treatment o
EWM as the model of the distribution of goods in a spatia
extended market is given in Sec. II.

The article is organized as follows. In Sec. II the algebr
structure of the critical state of EWM is described by usi
the analogy with ASM. In Sec. III the definition of ava
lanches in EWM is given. The structure of avalanches
described and the critical exponent of the distribution of fi
avalanche sizes is obtained. In Sec. IV the evolution of
system as a whole in recurrent and transient states is
cussed and the mean square displacement of the particle
time is described for both of them. Analytic results are su
ported by Monte Carlo simulations.

II. ALGEBRAIC PROPERTIES OF EULERIAN
WALKERS MODEL

The Eulerian walkers model is defined as follows. Co
sider an arbitrary connected graphG consisting ofN sites.
Each site ofG is associated with an arrow which is directe
along one of the incident bonds. The arrow directions at
site i are specified by the integersa i (1<a i<t i) wheret i
is the number of nearest neighbors of the sitei . The set$a i%
gives a complete description of the medium. Starting with
arbitrary arrow configuration one drops the particle to a s
of G chosen at random. At each time step~i! the particle
arriving at a sitei changes the arrow direction froma i to
a i11, if a i,t i and to 1, if a i5t i ; and ~ii ! the particle
moves one step along the new arrow direction fromi to the
neighboring sitei 8.

Having no end points onG, the particle continues to walk
infinitely long. Due to a finite number of possible states
the system, it eventually settles into the Poincare´ cycle. For
most dynamic systems the recurrence time of this cy
grows exponentially withN. It has been shown in@9# that for
the EWM the Poincare´ cycle is squeezed to the Eulerian tra
5449 © 1998 The American Physical Society
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5450 PRE 58POVOLOTSKY, PRIEZZHEV, AND SHCHERBAKOV
@10# with the recurrence time of an order ofN. During the
Eulerian trail the particle passes all bonds of the graph
actly once in each direction.

There is the following simple interpretation of the d
namic rules of the model. Let us consider a traveling m
chant who buys and sells different kinds of goods in tow
connected by roads. All towns are supposed to produce
ferent kinds of goods. Upon arrival at a town, he sells all
goods bought in the previous town and buys the new one
be sold in a next town. Having bought some goods in a to
say Dubna, the merchant goes to one of its nearest neigh
Actually, this town is not random. The merchant has
simple strategy to ensure the highest level of sales reven
First of all, if he never sold the goods produced in Dubna
some of the neighboring towns, he chooses one of them~ar-
bitrary! to visit next. Then, if all the neighbors have alrea
been visited, he prefers that neighbor where he last sold
goods produced in Dubna earlier than at all the other ne
bors. If towns and roads connecting them are considere
sites and bonds of a graph, respectively, then the merc
motion matches the rules of EWM dynamics.

Let G be an open graph. It means that one auxiliary sit
introduced called a sink. The subset of sites ofG connected
with the sink forms an open boundary. The sink has no ar
and the particle reaching the sink leaves the system. T
the new particle is dropped to a site ofG chosen at random
Since on the closed graph the particle visits all sites dur
the walk, at the open graph it always reaches the sink. A
$C% of configurationsC5$a j% which remains onG when the
particle leftG for the sink is the set of stable configuration
The operatorai can be introduced as follows:

aiC5C8, ~1!

which describes the resulting transformation caused by d
ping the particle to the sitei . As usual in the theory of
Markov chains, the set$C% may be divided into two subsets
The first subset denoted by$R% includes those configuration
which can be obtained from an arbitrary configuration by
sequential action of the operatorsai . It follows from the
definition that the subset$R% is closed under a multiple actio
of the operatorsai . Once the system gets into$R%, it never
gets out under subsequent evolution. All nonrecurrent c
figurations are called transient and form the subset$T% which
is the complement to the set$R%. By definition, any recurren
configuration CP$R% may be reached from anotherC8
P$R% by a subsequent action of the operatorsai . Since this
is valid for C85C too, the identity operator acting in$R%
exists. In addition, the operatorsai have the following prop-
erties.

~1! For arbitrary sitesi and j and for any configuration o
arrowsC

aiajC5ajaiC. ~2!

~2! For any recurrent configurationCP$R%, there exists a
unique operator

~ai
21C!P$R%

such that
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21!C5C. ~3!

The proof of these statements is similar to the one for
avalanche operators in ASM@4# and is given in@6#. Thus the
operatorsai acting in the set of recurrent configurations$R%
form the Abelian group. The addition oft i particles to sitei
gives the same effect as the addition of one particle to e
of t i neighbors ofi . It returns the arrow outgoing fromi to
the former position and initiates the motion of one particle
each neighboring site. In the operator form, we have

ai
t i5)

k51

t i

aj k
, ~4!

where j k are neighbors of the sitei . Introducing the discrete
Laplacian onG as

D i j 5H t i , i 5 j

21, i and j are connected by a bond

0 otherwise

~5!

and using Eq.~4!, one can write the identity operator as

Ei5 )
j PG

aj
D i j . ~6!

Since all recurrent configurations can be obtained from
arbitrary one by a successive action of operatorsai , one can
represent anyCP$R% in the form

C5 )
i PG

~ai !
niC* . ~7!

TheN-dimensional vectorn labels all possible recurrent con
figurations. Equation~6! shows that two vectorsn and n8
label the same configuration if the difference between th
is ( jmjD i j wheremj are integers. TheN-dimensional space
$n% has a periodic structure with an elementary cell of t
form of a hyper-parallelepiped with base edgeseW i
5(D i1 ,D i2 , . . . ,D iN). Thus, the number of nonequivalen
recurrent configurations is

N5detD, ~8!

which is the Kirchhoff formula@10# for spanning trees and
the Dhar formula for the number of recurrent configuratio
in ASM @4#. The correspondence to ASM is not surprisin
The algebra of the operatorsai completely coincides with
that of avalanche operators of the Abelian sand pile mo
@4#. Moreover, the identity operator~6! has the same form fo
both the models.

Continuing the analogy between recurrent configuratio
of EWM and sand piles, one can find the expected num
Gi j of full rotations of the arrow at sitej , due to the particle
dropped ati @4#. During the walk, the expected number
steps fromj is D j j Gi j whereas2(kÞ jGikDk j is the average
flux into j . Equating both the fluxes, one gets

(
k

GikDk j5d i j ~9!
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or

Gi j 5@D21# i j . ~10!

The expected number of full rotations of the arrow is eq
to the number of entries into the sitej divided byt j . On the
other hand, the number of visits of a site for the random w
is also the Green function of the Laplace equation. Thus
have a surprising fact that the number of visits of the site
the particle for the deterministic motion in EWM coincide
with that for the ordinary random walk.

The direct correspondence between spanning trees, re
rent configurations of EWM, and Eulerian trails can be
tablished in the following way. The walking particle leav
each site along an arrow after turning this arrow. Theref
the trajectory of the particle is traced by arrows. IfG is an
open graph, all trajectories end at the sink and never fo
loops producing acyclic configurations of arrows.

Given an acyclic arrow configuration, we can construc
unique spanning tree rooted in the sink and vice versa.
deed, all bonds along which the arrows are directed form
spanning tree. Conversely, if we have a spanning tree ro
in the sink we can obtain the acyclic arrow configuration
pointing the arrow from each site along the path leading
the sink. This correspondence allows us to identify the a
clic arrow configurations and spanning trees. Below, we
not distinguish between them and by a spanning tree
mean both the spanning tree and its arrow representatio

If G is the closed graph, the particle settles into the Eu
rian trail during which it passes each bond exactly once
each direction. Let the particle which has already visited
sites arrive at a sitei at some moment. If we now remove th
arrow from i , we obtain the acyclic arrow configuratio
where all arrow paths lead toi . This defines the spannin
tree rooted in the site of the current particle location.

III. AVALANCHE DYNAMICS

The particle added to the recurrent configuration of AS
may induce successive topplings of sites called the a
lanche. At the initial moment, it destroys the recurrent co
figuration and the system leaves the recurrent state. After
avalanche stops, the recurrent configuration is restored a
Thus the avalanche in ASM can be defined as a period
reconstruction of the recurrent state. This definition may
directly applied to EWM.

We start with a recurrent state of EWM. The correspon
ing arrow configuration forms a spanning tree. Once a p
ticle is dropped, it can destroy the spanning tree by closin
loop of arrows. During the evolution, one loop can be tra
formed into another. When all loops disappear, the spann
tree is restored. The interval of existence of the loop can
called theavalanche of cyclicityor simply avalanche. The
loops can be created and destroyed several times during
motion of one particle. Therefore, unlike ASM, an additio
of one particle can initiate several avalanches in the syst
When a particle comes to the sink, it always directs the
rows to the sink thus restoring the spanning tree. Theref
when the particle leaves the system, the avalanche alw
ends and the recurrent state is restored. The particle dyn
ics represents successive transitions from one recurrent
to another through avalanches. To study the evolution of
l
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system, the structure of the avalanche should be consid
in detail.

Consider the Eulerian walk on the square latticeL of size
L3L with open boundary conditions. Each boundary site
connected to the sink by one bond on the edge and by
bonds at the corners ofL. The rule of arrow rotations is the
same for all sites. If we denote the bonds outgoing from
site i by N,E,S,W, the rule of rotations isN→E→S→W. In
other words, when the particle arrives at a site, the arr
outgoing from this site turns to the next bond clockwise. F
a topological reason, this rule leads to a simple structure
avalanches, namely, to clusters of sites visited by a parti
being compact.

Let the particle be dropped to a recurrent configurat
which is a spanning tree. At some step the first loop is c
ated. The arrows can form loops of two kinds: clockwise a
anticlockwise. The loop is clockwise if tracing the loo
along arrows leaves the interior of the loop on the right a
anticlockwise otherwise. It is easy to see that due to
clockwise rule of rotations, only clockwise loops can be c
ated from recurrent states. Indeed, the anti-clockwise l
arises when the arrow, which closes this loop, is directed
the previous time step into the area bounded by the loop.
arrow path beginning from this arrow could not leave t
area of the loop without intersections with the loop. Th
means that before this loop was closed, another loop exis
which contradicts the assumption that we start with a sp
ning tree.

Consider the evolution after closing a clockwise loop
the spanning tree. Denote byi j the arrow if it is pointed from
site i to site j . Analogously, we denote byi 1i 2i 3 . . . the
arrow path if the arrow from sitei 1 is pointed to sitei 2 , the
arrow fromi 2 is pointed toi 3 , and so on. Let a spanning tre
exist at the time step (t21), while at the stept, the particle
that arrived at the sitei 1 changes the arrow direction from
i 1i 0 to i 1i 2 and the clockwise loopO15 i 1i 2i 3 . . . i ni 1 ap-
pears@Fig. 1~a!#. Now, we can prove the following propos
tion.

Proposition 1. The particle does not leave the area of t
loop O1 and the spanning tree cannot be restored until
arrows inside the loop area make the full rotation and

FIG. 1. ~a! Closing the loop ati 1 . ~b! The last step before
openning the loop.~c!, ~d!, ~e! The evolution on the closed grap
settled into the Eulerian trail. The loops in~a! and ~b! exactly co-
incide with those in~d! and ~e!.
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5452 PRE 58POVOLOTSKY, PRIEZZHEV, AND SHCHERBAKOV
arrows belonging to the loop itself change the direction
anticlockwise forming the anticlockwise loopO2

5 i 1i n . . . i 2i 1 . At the last step whenO2 appears, the par
ticle arrives ati 2 and at the next step the arrow ati 2 rotates
out of the loop area and the spanning tree may be rest
@Fig. 1~b!#.

Proof. Consider EWM on the auxiliary graphG, which is
a part of the square lattice bounded by the loopO2 with
closed boundary conditions. The closed boundary means
all bonds that link boundary sitesi 1 ,i 2 ,i 3 , . . . ,i n with the
sites of the lattice outside the loop area are removed.
rules of rotations are modified so that an arrow skips dele
bonds. We consider the Eulerian trail atG starting from the
site i 2 . At the initial moment, the arrow configuration atG
differs from that on the latticeL only by orientation of the
loop: instead of the clockwise loopO15 i 1i 2i 3 . . . i ni 1 on
L, we have the anticlockwise loopO25 i 1i n . . . i 2i 1 on G
@Fig. 1~c!#. Starting from the first step, (n21) successive
steps reverseO2 intoO1 and the particle arrives ati 1 @Fig.
1~d!#. Notice that the initial arrow configuration onG corre-
sponds to that described in the preceding section, when
particle has already settled into the Eulerian trail on
closed graph. Indeed, at the first moment, all arrows exc
the arrow at the site of the current particle location form
spanning tree rooted of this site. Hence, the subsequent
lution leads again to the loopO2 via full rotation of arrows
at all internal sites@Fig. 1~e!#. On the other hand, this part o
evolution of the graphG coincides with the one on the orig
nal latticeL since the moment when the loopO1 is closed
@Fig. 1~a!# up to the moment when it is changed byO2 @Fig.
1~b!#. At the last step, the arrowi 2i 1 rotates out of the loop
area and the loop can be broken. Before this moment
loop exists permanently as during the Eulerian trail one lo
always exists. The proposition is proven.

Generally, the avalanche does not necessarily end a
that. Two situations are possible. At the last step, the ar
at i 2 turns outside the anticlockwise loopi 2i 1→ i 2i 28 . If i 18 is
connected to the sink through the arrow path, the spann
tree is restored and the avalanche is finished. This is the
of a one-loop avalanche. In the other case, the arrow p
from i 28 goes to i 2 , i.e., i 28 is the predecessor ofi 2 with
respect to the sink. Then, one more loop is closed and
avalanche continues. This is a two-loop avalanche. The
ond loop relaxes like the first one. When the second loo
reversed, the spanning tree is always restored because
last step the particle arrives ati 0 which was connected to th
sink by an arrow path before the avalanche started.

Several consequences can be obtained from the pic
described. During the avalanche the particle visits sites
side the loop four times, sites of the edge twice, and site
the corners with angles ofp/2 and 3p/2 once and three
times, respectively. Generally, if two arrows belonging to
loop, one of which comes to the site on the loop and
other goes out from this site, form the anglea, then the
particle visits this site during an avalanche 2a/p times. The
sum of angles of corners of any loop on the square lattic
equal to (g22)p, whereg is the number of corners. Then
the number of steps necessary to cover a loop is given by
formula
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T5@4s12~p2g!12~g22!#115~4s12p24!11,
~11!

wheres is the number of inner sites, andp is the perimeter of
the loop. As the avalanches can consist of one or two lo
and the perimeterp is always even, the duration of ava
lanches can be equal to any of the following numbers:

T151~mod 4!,
~12!

T252~mod 4!,

whereT1 andT2 are the durations of avalanches consisti
of one and two loops, respectively. This explains the dou
distribution of durations of avalanches~Fig. 2! obtained in
@12#. Also we can find the critical exponent of the duratio
distribution for the first avalanche. In the thermodynam
limit, the duration of avalanches grows as the area of
loop. It has been shown in@13# that the probability to get a
loop of the sizes when a bond is added to the spanning tr
at random is equal to

P~s!;s211/8. ~13!

In the distribution~13!, the loop is assumed to be linked t
the sink by a unique path attached to an arbitrary site a
perimeter, wherever it is closed by the added bond. In
case, loops are closed by turning the arrow that was c
nected to the sink through an arrow path before the tu
Hence, for the loop of perimeterp, one should select only
the latter case fromp possible positions of the site linked t
the sink with respect to the place where the loop is clos
To this end, the distribution~13! should be divided by the
perimeter of the loop. Taking into account that the perime
p of the loop scales with the linear sizer as the fractal di-
mension of a chemical path on a spanning tree@13# p;r 5/4

and that the loop is compacts;r 2, we obtain

FIG. 2. The distribution of duration of the first avalanche in t
SOC state is shown on the double logarithmic plot. The distribut
splits into two parts as described in the text. The slope of both
parts is the same with the critical exponentt52.0.
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P~s!;
s211/8

r 5/4
;s22. ~14!

Thus for the first avalanches the critical exponent of the d
tribution of duration ist52. The one- and two-loop ava
lanches differ only in a local structure of the spanning tree
the site of closing the loop. Therefore the critical expone
are the same for both the distributions. This result is in
cellent agreement with numerical simulations presented
Fig. 2 where we have considered the EWM on the squ
lattice of linear sizeL5400 with open boundary conditions

The first avalanches in EWM are similar to the eras
loops in the loop-erased walks, studied in@14#. The same
exponentt52 was obtained.

The resultt52 is valid only for the first avalanches fo
their independence of each other. The analytic derivation
t for arbitrary avalanches is a more difficult problem due
correlations between subsequent avalanches appearing
ing the motion of one particle.

IV. PROPAGATION OF EULERIAN WALKERS

Besides the evolution of the system as a whole, we
describe the motion of a particle itself. Consider the parti
dropped on the lattice with a spanning tree. We call the
i a predecessor ofj if the arrow path comes fromi to j . Since
the particle trajectory is traced by arrows, all visited sites
predecessors of the site of a current particle location. If
particle arrives at the site which is its predecessor, the loo
closed. Thus the particle can visit the sites that have alre
been visited only during an avalanche.

We divide the motion of the particle into the followin
stages. The first stage coincides with the first avalanche
the moment it finishes, the avalanche area remains boun
by the anticlockwise loop opened at the bond connecting
sites where the avalanche begins and where it ends. Fur
moving on the lattice, the particle cannot enter the area of
first avalanche until it creates a loop enclosing this area.
this time, new avalanches appear beyond the first one, b
attached to its boundary and tending to go clockwise aro
it. Eventually, the particle creates a loop enclosing the a
of the first avalanche and visits it again. When the avalan
corresponding to this loop ends, the second stage of the
lution finishes. At this moment, we have the cluster of visit

FIG. 3. A subsequent evolution of a cluster of visited sites in
SOC state. A schematic picture of the cluster after the first~a! and
second~b! stages of evolution. The areas with different numbers
visits are shown by different colors. The directions of arrows c
respond to their final positions.
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sites which consists of the area of the first avalanche, wh
each inner site is visited eight times, surrounded by the c
ters of subsequent avalanches, where all sites are visited
times ~Fig. 3!.

Further behavior of the system is similar. If at some ev
lution stage we have a cluster of visited sites, at the n
stage all sites of this cluster will be visited four more tim
and some new area will be added to the cluster of visi
sites. After each evolution stage is completed, the cluste
visited sites is compact because it consists of compactly s
ated avalanche clusters.

Thus we obtain the system of compact clusters where
sites are visited 4N, N51,2, . . . times. The clusters are
strictly embedded one into another with a growing number
visits like Grassberger-Manna clusters in ASM@15#.

Using this picture, we can find the time dependence of
mean square displacement of the particle in the critical st
The number of visitsN(R) of a site separated from the origi

e

f
-

FIG. 4. The dependence of the mean square displacement o
particle on time in the transient~a! and SOC~b! states. The ob-
tained values of the critical exponents aren t50.33 andn50.5,
respectively.
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5454 PRE 58POVOLOTSKY, PRIEZZHEV, AND SHCHERBAKOV
by the distanceR is given by the Green function of th
Laplace equation~9!. When ur2r 8u tends to the lattice size
L, G(r ,r 8) decays as ln(L/ur2r 8u), so we can write

dN~R!

dR
;2

1

R
. ~15!

On the other hand, the timeT required for a particle to
visit four times all the sites of the compact cluster is of
order of its sizeR2. Then, the rate of the growth is

dN

dT
;2

1

R2
. ~16!

Using Eqs.~15! and~16! and the property of compactness
the embedded clusters, we obtain the mean square disp
ment

^R2&;T2n, n5
1

2
~17!

that is the diffusion law of a simple random walk.
In the transient state, we have no spanning tree repre

tation for the evolution of the system. The sites already v
ited by the particle are connected with the current part
location by an arrow path and the cluster of these sites ha
acyclic structure. However, the cluster of acyclic arrows
embedded into the media of randomly distributed arrows

The particle moves around the cluster of visited si
clockwise, closing the loops and then covering them. E
time, going around the cluster, it visits the sites of clus
four times as in a recurrent state. However, in the trans
case, the linear size of increasing the cluster of visited s
does not depend on the size of the cluster, as the arr
beyond it are not correlated. The time of increasing is of
order of the size of the cluster, i.e.,

dR

dT
;

1

R2
. ~18!

Thus, instead of the simple diffusion law~17! in the critical
state, one obtains for the transient states@9#

^R2&;T2n t, n t5
1

3
. ~19!
.

,

s.
ce-

n-
-
e
an
s

s
h
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s

ws
n

Note that the power law~19! is valid only on the time scale
much greater than the time being spent inside the cluste
the visited sites. Inside the cluster, motion of the particles
similar to that in the critical state with the diffusion law~17!.

Now we can estimate the average time required to re
the critical state starting from an arbitrary random config
ration of arrows. To get a spanning tree on the lattice,
particle must visit all sites at least once. Using Eq.~19! we
can obtain for the lattice of the sizeL3L

Tc;L3. ~20!

The same time is required for a particle walking on t
closed graph to settle into the Eulerian trail.

We also measured the mean square displacement num
cally. Starting from the transient state,^R2& is described by
the power law with the critical exponentn t50.33 as is
shown in Fig. 4~a!. Subsequent evolution of the system b
repeated additions of particles changes this power law.
the system in the SOC state, we obtained the valuen50.5
@Fig. 4~b!#. These simulations illustrate the exact results o
tained above.

In summary, we considered the dynamics of the Euler
walkers model. The structure of avalanches in the SOC s
was studied in detail. We obtained the critical exponent
the distribution of durations of the first avalanche. Consid
ing the evolution of the system as a sequence of avalanc
we found the simple diffusion law for the mean square d
placement of the particle in the SOC state. The crosso
from the transient state into the SOC state was descr
qualitatively. The obtained exact results were confirmed
numerical simulations.
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