PHYSICAL REVIEW E VOLUME 58, NUMBER 5 NOVEMBER 1998

Dynamics of Eulerian walkers
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We investigate the dynamics of Eulerian walkers as a model of self-organized criticality. The evolution of
the system is divided into characteristic periods which can be seen as avalanches. The structure of avalanches
is described and the critical exponent in the distribution of first avalanehesis determined. We also study
a mean square displacement of Eulerian walkers and obtain a simple diffusion law in the critical state. The
evolution of an underlying medium from a random state to the critical one is described.
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I. INTRODUCTION infinitely long memory is due to exclusion of multiple visits
of lattice sites, EWM presents an alternative way to intro-
To illustrate the phenomenon of self-organized criticalityduce memory effects. The visited sites are not forbidden for
(SOQ [1] a wide range of cellular automata such as sandhe next visits but a prescription for the next step is changed
piles, rice piles, and forest fires have been propdded].  after each visit. As a result, EWM evolves to the critical state
They assume a system Consisting of a |arge number of e|éNhere the deterministic walk is characterized by the Simple
ments. The energy being randomly added to the system giffusion law.
redistributed then over the degrees of freedom by a kind of Like most of the problems of the graph theory, EWM
nonlinear diffusion. This is realized by avalanchelike pro-admits a simple “real life” interpretation. A treatment of
cesses which carry the added energy out of the system. AsBWM as the model of the distribution of goods in a spatially
rule, the system spontaneously evolves towards the criticgixtended market is given in Sec. II.
state free of any characteristic length and time scale. In this The article is organized as follows. In Sec. Il the algebraic
state, probabilistic distributions of quantities characterizingstructure of the critical state of EWM is described by using
the statistical ensemble exhibit the power law behavior. ~ the analogy with ASM. In Sec. Il the definition of ava-
Which features of the SOC dynamics are responsible folanches in EWM is given. The structure of avalanches is
the existence of a dynamic attractor in complex systemsgdescribed and the critical exponent of the distribution of first
What are the origins of the scaling and self-similarity in thea@valanche sizes is obtained. In Sec. IV the evolution of the
stationary state? To answer these questions, one should ifystem as a whole in recurrent and transient states is dis-
vestigate nonlinear diffusion in the SOC models and studyussed and the mean square displacement of the particle with
the structure of avalanches. The difficulties encountered heréme is described for both of them. Analytic results are sup-
arise from the complexity of dynamic processes in thePorted by Monte Carlo simulations.
strongly correlated SOC systems. Up to now, the most ana-

lytically tractable model has been the Abelian sand pile Il. ALGEBRAIC PROPERTIES OF EULERIAN

model (ASM) [4]. Due to its simple algebraic structure, the WALKERS MODEL

detailed description of the SOC state of ASM has been _ _ _

given, and some critical exponents have been folieB]. The Eulerian walkers model is defined as follows. Con-

Recently, a new model has been proposed which is called thgder an arbitrary connected gra@h consisting ofN sites.
Eulerian walkers moddEWM) [9]. In a sense, this model is Each site ofG is associated with an arrow which is directed
even more elementary than ASM as it deals with a singleédlong one of the incident bonds. The arrow directions at the
moving particle. The dynamics of this model is driven by asitei are specified by the integetg (1=<a;<rm;) wherer;
walking particle. The motion of a particle is affected by theis the number of nearest neighbors of the &it&he set{ a;}
medium, and in its turn affects the medium inducing longgives a complete description of the medium. Starting with an
range correlations in the system. If the walk occurs in aarbitrary arrow configuration one drops the particle to a site
closed system, it continues infinitely long and eventually get®f G chosen at random. At each time stép the particle
self-organized into Eulerian trai[40]. If a system is open, arriving at a sitei changes the arrow direction frous; to

the particles can leave the system and new particles drogi+1, if @;<7; and to 1, ifa;=7;; and (ii) the particle
time after time. In this case, the system evolves to the criticaimoves one step along the new arrow direction friota the
state similar to that in ASM. By analogy with ASM, the neighboring site’.

avalanches in EWM have been introdud¢éd] as periods of Having no end points o, the particle continues to walk
reconstruction of recurrent states, after they have been brdnrfinitely long. Due to a finite number of pos;:ible states of
ken by an added particle. the system, it eventually settles into the Poinoeyele. For

Another aspect of EWM is the possibility to look at non- most dynamic systems the recurrence time of this cycle
trivial diffusion laws and their change under the self- grows exponentiallylwitm. It has been shown if9] that for
organization. In contrast to the self-avoiding walk where anthe EWM the Poincareycle is squeezed to the Eulerian trail
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[10] with the recurrence time of an order bf. During the ai(ai_l)C=C. 3
Eulerian trail the particle passes all bonds of the graph ex-
actly once in each direction. The proof of these statements is similar to the one for the

There is the following simple interpretation of the dy- avalanche operators in ASM] and is given inf6]. Thus the
namic rules of the model. Let us consider a traveling meroperatorsa; acting in the set of recurrent configuratiofi®
chant who buys and sells different kinds of goods in townsorm the Abelian group. The addition of particles to site
connected by roads. All towns are supposed to produce difgives the same effect as the addition of one particle to each
ferent kinds of goods. Upon arrival at a town, he sells all theof 7, neighbors ofi. It returns the arrow outgoing froiinto
goods bought in the previous town and buys the new ones tghe former position and initiates the motion of one particle to
be sold in a next town. Having bought some goods in a towneach neighboring site. In the operator form, we have
say Dubna, the merchant goes to one of its nearest neighbors.

Actually, this town is not random. The merchant has a R

simple strategy to ensure the highest level of sales revenues. a, 'Zkﬂl a,, (4)

First of all, if he never sold the goods produced in Dubna in B

some of the nelghbormg towns, he ChQOSeS one of tram wherej, are neighbors of the site Introducing the discrete
bitrary) to visit next. Then, if all the neighbors have already Laplacian onG as

been visited, he prefers that neighbor where he last sold the
goods produced in Dubna earlier than at all the other neigh- T i=j
bors. If towns and roads connecting them are considered as

sites and bonds of a graph, respectively, then the merchant Ajj=
motion matches the rules of EWM dynamics. 0 otherwise

Let G be an open graph. It means that one auxiliary site is
introduced called a sink. The subset of site<Goéonnected ~and using Eq(4), one can write the identity operator as
with the sink forms an open boundary. The sink has no arrow
and the particle reaching the sink leaves the system. Then, E — H adi 6)
the new particle is dropped to a site @fchosen at random. ' jec
Since on the closed graph the particle visits all sites during
the walk, at the open graph it always reaches the sink. A sééince all recurrent configurations can be obtained from an
{C} of configurations<C={a;} which remains oG when the  arbitrary one by a successive action of operatgrsone can
particle leftG for the sink is the set of stable configurations. represent ang e {R} in the form
The operatom; can be introduced as follows:

—1, i and ] are connected by a bond (5)

ac=C' @ c=1I (amer. v

which describes the resulting transformation caused by dropFhe N-dimensional vecton labels all possible recurrent con-
ping the particle to the sité. As usual in the theory of figurations. Equation(6) shows that two vectora andn’
Markov chains, the s€C} may be divided into two subsets. label the same configuration if the difference between them
The first subset denoted KR} includes those configurations is =;m;A;; wherem; are integers. Th&l-dimensional space
which can be obtained from an arbitrary configuration by a{n} has a periodic structure with an elementary cell of the
sequential action of the operatogs. It follows from the  form of a hyper-parallelepiped with base edges
definition that the subs¢R} is closed under a multiple action =(A., A.,, ... Ay). Thus, the number of nonequivalent
of the operators; . Once the system gets in{&}, it never  recurrent configurations is

gets out under subsequent evolution. All nhonrecurrent con-

figurations are called transient and form the supetvhich N=detA, (8

is the complement to the sgR}. By definition, any recurrent

configuration Ce {R} may be reached from anoth&’  which is the Kirchhoff formulg10] for spanning trees and
e{R} by a subsequent action of the operatars Since this the Dhar formula for the number of recurrent configurations
is valid for C'=C too, the identity operator acting ifR} ~ in ASM [4]. The correspondence to ASM is not surprising.
exists. In addition, the operatoas have the following prop- The algebra of the operatoes completely coincides with

erties. that of avalanche operators of the Abelian sand pile model
(1) For arbitrary sites andj and for any configuration of [4]. Moreover, the identity operatg8) has the same form for
arrowsC both the models.
Continuing the analogy between recurrent configurations
a;a;C=a;a;C. (2) of EWM and sand piles, one can find the expected number

Gj; of full rotations of the arrow at sitg, due to the particle
(2) For any recurrent configuratid@ e {R}, there exists a dropped at [4]. During the walk, the expected number of
unigue operator steps fromj is A;;G;; whereas— =, ;G Ay is the average
flux into j. Equating both the fluxes, one gets
(8 'C)e{R}

such that zk: GikAyj= djj 9
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or

Gi=[A"1];. (10

The expected number of full rotations of the arrow is equal
to the number of entries into the sitelivided by 7;. On the iy J
other hand, the number of visits of a site for the random walk
is also the Green function of the Laplace equation. Thus we
have a surprising fact that the number of visits of the site by
the particle for the deterministic motion in EWM coincides
with that for the ordinary random walk.

The direct correspondence between spanning trees, recu
rent configurations of EWM, and Eulerian trails can be es-
tablished in the following way. The walking particle leaves (&
each site along an arrow after turning this arrow. Therefore
the trajectory of the particle is traced by arrowsdfis an
open graph, all trajectories end at the sink and never form FIG. 1. (&) Closing the loop ati;. (b) The last step before
loops producing acyclic configurations of arrows. openning the loop(c), (d), (€) The evolution on the closed graph

Given an acyclic arrow configuration, we can construct asettled into the Eulerian trail. The loops (&) and (b) exactly co-
unique spanning tree rooted in the sink and vice versa. Inincide with those in(d) and (e).
deed, all bonds along which the arrows are directed form the )
spanning tree. Conversely, if we have a spanning tree roote_?yStem; the structure of the avalanche should be considered
in the sink we can obtain the acyclic arrow configuration by!n detail. _ _
pointing the arrow from each site along the path leading to Consider the Eulerian walk on the square latticef size
the sink. This correspondence allows us to identify the acyl-< L with open boundary conditions. Each boundary site is
clic arrow configurations and spanning trees. Below, we ddonnected to the sink by one bond on the edge and by two
not distinguish between them and by a spanning tree waonds at the corners &. The rule of arrow rotatlons is the
mean both the spanning tree and its arrow representation, Same for all sites. If we denote the bonds outgoing from a

If G is the closed graph, the particle settles into the EuleSitei by N,E,S,W, the rule of rotations ifl—E—S—W. In
rian trail during which it passes each bond exactly once irPther words, when the particle arrives at a site, the arrow
each direction. Let the particle which has already visited alPutgoing from this site turns to the next bond clockwise. For
sites arrive at a siteat some moment. If we now remove the @ topological reason, this rule leads to a simple structure of
arrow from i, we obtain the acyclic arrow configuration avglanches, namely, to clusters of sites visited by a particle,
where all arrow paths lead to This defines the spanning P€ing compact.

tree rooted in the site of the current particle location. Let the particle be dropped to a recurrent configuration
which is a spanning tree. At some step the first loop is cre-

ated. The arrows can form loops of two kinds: clockwise and
anticlockwise. The loop is clockwise if tracing the loop
The particle added to the recurrent configuration of ASMalong arrows leaves the interior of the loop on the right and
may induce successive topplings of sites called the avaanticlockwise otherwise. It is easy to see that due to the
lanche. At the initial moment, it destroys the recurrent con-clockwise rule of rotations, only clockwise loops can be cre-
figuration and the system leaves the recurrent state. After thated from recurrent states. Indeed, the anti-clockwise loop
avalanche stops, the recurrent configuration is restored agaiérises when the arrow, which closes this loop, is directed at
Thus the avalanche in ASM can be defined as a period dhe previous time step into the area bounded by the loop. The
reconstruction of the recurrent state. This definition may bearrow path beginning from this arrow could not leave the
directly applied to EWM. area of the loop without intersections with the loop. This
We start with a recurrent state of EWM. The correspond-means that before this loop was closed, another loop existed,
ing arrow configuration forms a spanning tree. Once a parwhich contradicts the assumption that we start with a span-
ticle is dropped, it can destroy the spanning tree by closing aing tree.
loop of arrows. During the evolution, one loop can be trans- Consider the evolution after closing a clockwise loop at
formed into another. When all loops disappear, the spanninthe spanning tree. Denote bythe arrow if it is pointed from
tree is restored. The interval of existence of the loop can beite i to site j. Analogously, we denote bijisiz... the
called theavalanche of cyclicityor simply avalanche. The arrow path if the arrow from sitg, is pointed to sité,, the
loops can be created and destroyed several times during tle@row fromi, is pointed ta 3, and so on. Let a spanning tree
motion of one particle. Therefore, unlike ASM, an addition exist at the time stept 1), while at the step, the particle
of one particle can initiate several avalanches in the systenthat arrived at the site; changes the arrow direction from
When a particle comes to the sink, it always directs the ari,i, to i,i, and the clockwise loof® * =ijisiz...i4i, ap-
rows to the sink thus restoring the spanning tree. Thereforeyears[Fig. 1(a)]. Now, we can prove the following proposi-
when the particle leaves the system, the avalanche alway®n.
ends and the recurrent state is restored. The particle dynam- Proposition 1 The particle does not leave the area of the
ics represents successive transitions from one recurrent stdteop O © and the spanning tree cannot be restored until all
to another through avalanches. To study the evolution of tharrows inside the loop area make the full rotation and the

LJ
c d e

IIl. AVALANCHE DYNAMICS
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arrows belonging to the loop itself change the direction to L e O AL B B S B B
anticlockwise forming the anticlockwise loopO ™~
=iqin...ioi1. At the last step whel® ~ appears, the par- -1
ticle arrives ati, and at the next step the arrowiatrotates
out of the loop area and the spanning tree may be restore 2
[Fig. 1b)].
Proof. Consider EWM on the auxiliary gragh which is = a3
a part of the square lattice bounded by the I@@p with Eo
closed boundary conditions. The closed boundary means thég,

lo

all bonds that link boundary sitég,i,,ig, ... ,i, with the
sites of the lattice outside the loop area are removed. The
rules of rotations are modified so that an arrow skips deletec
bonds. We consider the Eulerian trail Gistarting from the

sitei,. At the initial moment, the arrow configuration &t ° .
differs from that on the lattic&€ only by orientation of the Ll —
loop: instead of the clockwise loofp *=ijijig...ini; ON 7 0 1 2 3 4 5
L, we have the anticlockwise loof ™~ =i4i,...isi; on G

log(T)

[Fig. 1(c)]. Starting from the first step,n(—1) successive

steps reverse ~ into O and the particle arrives af [Fig. FIG. 2. The distribution of duration of the first avalanche in the
1(d)]. Notice that the initial arrow configuration ahcorre-  sOC state is shown on the double logarithmic plot. The distribution
sponds to that described in the preceding section, when thsplits into two parts as described in the text. The slope of both the
particle has already settled into the Eulerian trail on theparts is the same with the critical exponent 2.0.
closed graph. Indeed, at the first moment, all arrows except
the arrow at the site of the current particle location form the  T=[4s+2(p—vy)+2(y—2)]+1=(4s+2p—4)+1,
spanning tree rooted of this site. Hence, the subsequent evo- (11
lution leads again to the loof ~ via full rotation of arrows
at all internal site$Fig. 1(e)]. On the other hand, this part of Wheresis the number of inner sites, apds the perimeter of
evolution of the grapl§ coincides with the one on the origi- the loop. As the avalanches can consist of one or two loops
nal lattice £ since the moment when the lo@@" is closed and the perimetep is always even, the duration of ava-
[Fig. 1(a)] up to the moment when it is changed 8y [Fig. lanches can be equal to any of the following numbers:
1(b)]. At the last step, the arroiyi, rotates out of the loop
area and the loop can be broken. Before this moment the
loop exists permanently as during the Eulerian trail one loop
always exists. The proposition is proven.
Generally, the avalanche does not necessarily end after . .
that. Two situations are possible. At the last step, the arrov\\f\/here-r1 andT, are the durat|_ons of a_valanch_es consisting
. ) . | L, o of one and two loops, respectively. This explains the double
ati, turms outside the anticlockwise loogi; —izl5. If iy is __distribution of durations of avalanchéBig. 2) obtained in
connected to the sink through the arrow path, the spanning 1 Aiso we can find the critical exponent of the duration
tree is restored and the avalanche is finished. This is the caggstribution for the first avalanche. In the thermodynamic
of a one-loop avalanche. In the other case, the arrow palfinit, the duration of avalanches grows as the area of the
from i, goes toi,, i.e., i; is the predecessor db with  |oop. It has been shown i3] that the probability to get a
respect to the sink. Then, one more loop is closed and thop of the sizes when a bond is added to the spanning tree
avalanche continues. This is a two-loop avalanche. The seat random is equal to
ond loop relaxes like the first one. When the second loop is

T,=1(mod 4),
(12
T,=2(mod 4),

reversed, the spanning tree is always restored because at the P(s)~s 8 (13
last step the particle arrives igtwhich was connected to the
sink by an arrow path before the avalanche started. In the distribution(13), the loop is assumed to be linked to

Several consequences can be obtained from the pictutie sink by a unique path attached to an arbitrary site at its
described. During the avalanche the particle visits sites inperimeter, wherever it is closed by the added bond. In our
side the loop four times, sites of the edge twice, and sites atase, loops are closed by turning the arrow that was con-
the corners with angles ofr/2 and 37/2 once and three nected to the sink through an arrow path before the turn.
times, respectively. Generally, if two arrows belonging to aHence, for the loop of perimetgr, one should select only
loop, one of which comes to the site on the loop and thehe latter case from possible positions of the site linked to
other goes out from this site, form the angle then the the sink with respect to the place where the loop is closed.
particle visits this site during an avalanche/2r times. The To this end, the distributiof13) should be divided by the
sum of angles of corners of any loop on the square lattice iperimeter of the loop. Taking into account that the perimeter
equal to (v—2)m, wherevy is the number of corners. Then, p of the loop scales with the linear sizeas the fractal di-
the number of steps necessary to cover a loop is given by thmension of a chemical path on a spanning {re@ p~r5*
formula and that the loop is compast-r?, we obtain
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FIG. 3. A subsequent evolution of a cluster of visited sites in the 1.0 N N
SOC state. A schematic picture of the cluster after the fasand L ]
second(b) stages of evolution. The areas with different numbers of r .
visits are shown by different colors. The directions of arrows cor- [ ]
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Thus for the first avalanches the critical exponent of the dis-
tribution of duration ist=2. The one- and two-loop ava-
lanches differ only in a local structure of the spanning tree at 20
the site of closing the loop. Therefore the critical exponents
are the same for both the distributions. This result is in ex-
cellent agreement with numerical simulations presented ing
Fig. 2 where we have considered the EWM on the square® 15
lattice of linear sizd. =400 with open boundary conditions. &
The first avalanches in EWM are similar to the erased
loops in the loop-erased walks, studied[itd]. The same
exponentr=2 was obtained. 1.0
The result7=2 is valid only for the first avalanches for
their independence of each other. The analytic derivation ol
7 for arbitrary avalanches is a more difficult problem due to
correlations between subsequent avalanches appearing dt
ing the motion of one particle.

(b)

045Illlllllllllllllllllllll
1 2 3 4 5

log,o(T)

[o>]

IV. PROPAGATION OF EULERIAN WALKERS FIG. 4. The dependence of the mean square displacement of the

Besides the evolution of the system as a whole, we CaHa}rticle on time in the t.r.ansier(a) and SOC(b) states. The ob-
describe the motion of a particle itself. Consider the particld2iNed values of the critical exponents arg=0.33 andv=0.5,
dropped on the lattice with a spanning tree. We call the sitéeSpeCt'Vely‘

i a predecessor ¢fif the arrow path comes fromto j. Since

the particle trajectory is traced by arrows, all visited sites aresites which consists of the area of the first avalanche, where
predecessors of the site of a current particle location. If theeach inner site is visited eight times, surrounded by the clus-
particle arrives at the site which is its predecessor, the loop iters of subsequent avalanches, where all sites are visited four
closed. Thus the particle can visit the sites that have alreadymes (Fig. 3).

been visited only during an avalanche. Further behavior of the system is similar. If at some evo-

We divide the motion of the particle into the following lution stage we have a cluster of visited sites, at the next
stages. The first stage coincides with the first avalanche. Agtage all sites of this cluster will be visited four more times
the moment it finishes, the avalanche area remains boundeshd some new area will be added to the cluster of visited
by the anticlockwise loop opened at the bond connecting twesites. After each evolution stage is completed, the cluster of
sites where the avalanche begins and where it ends. Furthefisited sites is compact because it consists of compacitly situ-
moving on the lattice, the particle cannot enter the area of thated avalanche clusters.
first avalanche until it creates a loop enclosing this area. For Thus we obtain the system of compact clusters where the
this time, new avalanches appear beyond the first one, beirgjtes are visited M, N=1,2,... times. The clusters are
attached to its boundary and tending to go clockwise aroundtrictly embedded one into another with a growing number of
it. Eventually, the particle creates a loop enclosing the areaisits like Grassberger-Manna clusters in A$L5].
of the first avalanche and visits it again. When the avalanche Using this picture, we can find the time dependence of the
corresponding to this loop ends, the second stage of the evaaean square displacement of the patrticle in the critical state.
lution finishes. At this moment, we have the cluster of visitedThe number of visittN(R) of a site separated from the origin
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by the distanceR is given by the Green function of the Note that the power lawl9) is valid only on the time scale
Laplace equatiori9). When|r—r’| tends to the lattice size much greater than the time being spent inside the cluster of

L, G(r,r’) decays as In{[r—r’|), so we can write the visited sites. Inside the cluster, motion of the particles is
similar to that in the critical state with the diffusion lai/7).
dN(R) 1 (15 Now we can estimate the average time required to reach
dR R’ the critical state starting from an arbitrary random configu-

ration of arrows. To get a spanning tree on the lattice, the

~ On the other hand, the timie required for a particle to  particle must visit all sites at least once. Using ELp) we
visit four times all the sites of the compact cluster is of ancan obtain for the lattice of the sizex L

order of its sizeR?. Then, the rate of the growth is
dN 1 T~L3. (20)
dt R% "o The same time is required for a particle walking on the
Using Eqs.(15) and(16) and the property of compactness of ¢/0S€d graph to settle into the Eulerian trail.

the embedded clusters, we obtain the mean square displace- W€ &/s0 measured the mean squarezdi_splacement numeri-
ment cally. Starting from the transient stafR“) is described by

the power law with the critical exponent;=0.33 as is
shown in Fig. 4a). Subsequent evolution of the system by

(R~T?, »= > (17 repeated additions of particles changes this power law. For
the system in the SOC state, we obtained the valad®.5
that is the diffusion law of a simple random walk. [Fig. 4(b)]. These simulations illustrate the exact results ob-

In the transient state, we have no spanning tree represetgined above.
tation for the evolution of the system. The sites already vis- In summary, we considered the dynamics of the Eulerian
ited by the particle are connected with the current particlevalkers model. The structure of avalanches in the SOC state
location by an arrow path and the cluster of these sites has amas studied in detail. We obtained the critical exponent for
acyclic structure. However, the cluster of acyclic arrows isthe distribution of durations of the first avalanche. Consider-
embedded into the media of randomly distributed arrows. ing the evolution of the system as a sequence of avalanches,

The particle moves around the cluster of visited sitesve found the simple diffusion law for the mean square dis-
clockwise, closing the loops and then covering them. Eaclplacement of the particle in the SOC state. The crossover
time, going around the cluster, it visits the sites of clusteffrom the transient state into the SOC state was described
four times as in a recurrent state. However, in the transiengualitatively. The obtained exact results were confirmed by
case, the linear size of increasing the cluster of visited sitegumerical simulations.
does not depend on the size of the cluster, as the arrows
beyond it are not correlated. The time of increasing is of an
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